skip to main content


Search for: All records

Creators/Authors contains: "Lopes, Patricia C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An infection triggers a dramatic suite of changes in host physiology and behavior. While seemingly localized, the host response affects many other organisms, both within and beyond the boundaries of the host’s body, with far-reaching ecological implications. Here, I call for more awareness and integration of those potential ‘off-host’ effects. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. ABSTRACT Historically, the fields of ecoimmunology, psychoneuroimmunology and disease ecology have taken complementary yet disparate theoretical and experimental approaches, despite sharing critical common themes. Researchers in these areas have largely worked independently of one another to understand mechanistic immunological responses, organismal level immune performance, behavioral changes, and host and parasite/disease population dynamics, with few bridges across disciplines. Although efforts to strengthen and expand these bridges have been called for (and occasionally heeded) over the last decade, more integrative studies are only now beginning to emerge, with critical gaps remaining. Here, we briefly discuss the origins of these key fields, and their current state of integration, while highlighting several critical directions that we suggest will strengthen their connections into the future. Specifically, we highlight three key research areas that provide collaborative opportunities for integrative investigation across multiple levels of biological organization, from mechanisms to ecosystems: (1) parental effects of immunity, (2) microbiome and immune function and (3) sickness behaviors. By building new bridges among these fields, and strengthening existing ones, a truly integrative approach to understanding the role of host immunity on individual and community fitness is within our grasp. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. The COVID-19 pandemic impacted personal and professional life. For academics, research, teaching, and service tasks were upended and we all had to navigate the altered landscape. However, some individuals faced a disproportionate burden, particularly academics with minoritized identities or those who were early career, were caregivers, or had intersecting identities. As comparative endocrinologists, we determine how aspects of indi- vidual and species-level variation influence response to, recovery from, and resilience in the face of stressors. Here, we flip that framework and apply an integrative biological lens to the impact of the COVID-19 chronic stressor on our endocrine community. We address how the pandemic altered impact factors of academia (e.g., scholarly products) and relatedly, how factors of impact (e.g., sex, gender, race, career stage, caregiver status, etc.) altered the way in which individuals could respond. We predict the pandemic will have long-term impacts on the population dynamics, composition, and landscape of our academic ecosystem. Impact factors of research, namely journal submissions, were altered by COVID-19, and women authors saw a big dip. We discuss this broadly and then report General and Comparative Endocrinology (GCE) manuscript submission and acceptance status by gender and geographic region from 2019 to 2023. We also summarize how the pandemic impacted individuals with different axes of identity, how academic institutions have responded, compile proposed solu- tions, and conclude with a discussion on what we can all do to (re)build the academy in an equitable way. At GCE, the first author positions had gender parity, but men outnumbered women at the corresponding author position. Region of manuscript origin mattered for submission and acceptance rates, and women authors from Asia and the Middle East were the most heavily impacted by the pandemic. The number of manuscripts sub- mitted dropped after year 1 of the pandemic and has not yet recovered. Thus, COVID-19 was a chronic stressor for the GCE community. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. Abstract

    When animals are sick, their physiology and behavior change in ways that can impact their offspring. Research is emerging showing that infection risk alone can also modify the physiology and behavior of healthy animals. If physiological responses to environments with high infection risk take place during reproduction, it is possible that they lead to maternal effects. Understanding whether and how high infection risk triggers maternal effects is important to elucidate how the impacts of infectious agents extend beyond infected individuals and how, in this way, they are even stronger evolutionary forces than already considered. Here, to evaluate the effects of infection risk on maternal responses, we exposed healthy female Japanese quail to either an immune-challenged (lipopolysaccharide [LPS] treated) mate or to a healthy (control) mate. We first assessed how females responded behaviorally to these treatments. Exposure to an immune-challenged or control male was immediately followed by exposure to a healthy male, to determine whether treatment affected paternity allocation. We predicted that females paired with immune-challenged males would avoid and show aggression towards those males, and that paternity would be skewed towards the healthy male. After mating, we collected eggs over a 5-day period. As an additional control, we collected eggs from immune-challenged females mated to healthy males. We tested eggs for fertilization status, embryo sex ratio, as well as albumen corticosterone, lysozyme activity, and ovotransferrin, and yolk antioxidant capacity. We predicted that immune-challenged females would show the strongest changes in the egg and embryo metrics, and that females exposed to immune-challenged males would show intermediate responses. Contrary to our predictions, we found no avoidance of immune-challenged males and no differences in terms of paternity allocation. Immune-challenged females laid fewer eggs, with an almost bimodal distribution of sex ratio for embryos. In this group, albumen ovotransferrin was the lowest, and yolk antioxidant capacity decreased over time, while it increased in the other treatments. No differences in albumen lysozyme were found. Both females that were immune-challenged and those exposed to immune-challenged males deposited progressively more corticosterone in their eggs over time, a pattern opposed to that shown by females exposed to control males. Our results suggest that egg-laying Japanese quail may be able to respond to infection risk, but that additional or prolonged sickness symptoms may be needed for more extensive maternal responses.

     
    more » « less
  5. null (Ed.)
    ABSTRACT There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level. 
    more » « less